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This is an extended abstract for the paper [30].
An often used model for quantum theory is to associate to every physical system a C∗-algebra.
From a physical point of view it is unclear why operator algebras would form a good description
of nature. For this reason, many have ventured to find an explanation for why operator algebras
should represent physical systems [16, 26, 25, 8, 11, 17, 36, 31, 14, 5, 27, 28, 12, 20, 13, 2]. These
results are known as reconstructions of quantum theory. They start with a general physical
framework that ideally can represent any physical theory and then postulate a series of require-
ments, or axioms, that should be intuitive and reasonable to be true. From these requirements
they then derive (part of) the content of quantum theory.

In this paper, we use principles from effectus theory, a categorical logical framework generalis-
ing classical and quantum logic [9], to reconstruct the category of finite-dimensional C*-algebras.
Like Generalised Probabilistic Theories [7] (GPTs) and Categorical Quantum Mechanics [1]
(CQM), effectus theory is an abstract framework to reason about physical theories. Whereas
CQM focuses on tensor products and compact closure, and GPTs take convex structure as given,
an effectus does not require either. Instead an effectus requires that coproducts exist, and that
the effects of a system form an effect algebra, a generalisation of the space of effects of a quantum
system. The tensor product in CQM allows one to consider conjunctive composites of systems:
A⊗B represents system A and B. The coproducts A+B of effectus theory however represent
disjunctive composites: A or B.

Due to this different focus and the lack of conventional convex or monoidal structure, effectus
theory has developed new ideas for reasoning about physical systems. In particular, a new notion
of pure maps came forth from effectus theory [32, 35]. A map in an effectus is pure when it is
a composition of a compression and a filter. These maps satisfy particular universal properties
and respectively correspond to ‘forgetting’ and ‘measuring’ the validity of an effect.

We define a pure effect theory (PET) to be an effectus where the pure maps form a dagger-
category and filters and compressions are adjoint. A PET has a very rich structure, but it is too
abstract to retrieve the full structure of operator algebras. To close this gap we introduce the
notion of an operational effect theory, where the scalars are required to be real numbers, which
will force the systems to be described by vector spaces, and we further assume that the spaces
are finite-dimensional, along with a few other technical conditions. An operational effect theory
is very similar to a GPT.

Our main result is the following, which relates operational PETs to Euclidean Jordan algebras
(EJAs), generalised models of quantum theory that also include real and quaternionic Hilbert
spaces and C*-algebras [24, 23]:

Theorem 1. Let E be an operational PET. Then there exists a functor into the opposite
category of Euclidean Jordan algebras and sub-unital positive maps F : E→ EJAop

psu such that
Eff(F (A)) ∼= Eff(A) := Hom(A, I). Furthermore, this functor is faithful if and only if E satisfies
local tomography.
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EJAs appear in many reconstructions as an intermediate step along the way to deriving the
full structure of quantum theory. It is a well-known fact that there is no well-behaved monoidal
structure on Euclidean Jordan algebras [6, 4, 15]. By assuming additional monoidal structure
on an operational PET, we are therefore able to retrieve the standard C*-algebraic structure:

Theorem 2. Let E be a monoidal operational PET. Then the functor of Theorem 1 restricts ei-
ther to the category of real C*-algebras or to the category of complex C*-algebras. Furthermore,
this functor is faithful if and only E satisfies tomography.

The real and complex case can be further distinguished by requiring the PET to satisfy local
tomography [18]: that f = g if and only if q ◦ f = q ◦ g for all effects q.

Theorem 2 shows that the ideas arising from the categorical language of effectus theory
suffice to reconstruct the operator algebra structure of quantum theory. Conversely, a monoidal
PET can be seen as a categorical generalisation of the category of C∗-algebras.

The results in more depth

We will give here some more concrete details to enlighten the theorems stated above. We refer
to the main paper [30], in particular Section 3, for the formal definitions, examples, and context.

First of all, an effect theory is simply a category with a designated trivial object I that
represent the empty physical system. The maps ω : I → A are the states of the physical theory,
with the maps q : A → I being the effects, i.e. the measurements. The only structure we
require on an effect theory is that the set of effects Eff(A) := {q : A → I} is an effect algebra
and that all morphisms preserve this effect algebra structure. An effect algebra is a set with a
designated 0 and 1 element with a partial addition operation + and a negation operation (·)⊥.
These operations model the structure on the real unit interval [0, 1] (or more generally, the unit
interval of any ordered vector space) where x + y is defined when x + y ≤ 1 and negation is
simply x⊥ = 1 − x. We also consider monoidal effect theories, where the trivial object is also
the monoidal unit and the effect algebra structure is preserved by the tensor product.

There are two important types of maps we consider on an effect theory: compressions and
filters, which are ‘dual’ in a certain sense. Compressions and filters are defined with respect to
an effect q : A → I, and represent respectively forgetting that the effect q, when viewed as a
predicate, holds and post-selecting, i.e. forcing, q to hold.

Formally, a compression for q is a map πq : {A|q} → A such that 1 ◦ πq = q ◦ πq, which is
final with respect to this property, i.e. for all f : B → A satisfying 1 ◦ f = q ◦ f there is a unique
f : B → {A|q} making the following diagram commute:

{A|q} A

B

πq

f
f

Similarly, a filter for q is a map ξq : A→ Aq such that 1 ◦ ξq ≤ q which is initial with respect
to this property: for every map f : A → B satisfying 1 ◦ f ≤ q there is a unique f : Aq → B
making the following diagram commute:

Aq A

B

f

ξq

f

In effectus theory compressions come from a functor that is right-adjoint to the ‘truth’
functor, while filters are left-adjoint to ‘falsity’ [10, 9].
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Following [32, 33, 34, 35] we call a map f in an effect theory pure when there is a filter ξ and
compression π such that f = π ◦ ξ. For C*-algebras the pure maps correspond to isomorphisms
and Krauss rank 1 operators.

We need one final concept, which is that of sharpness of an effect. In a C*-algebra, the sharp
effects are precisely the projections. In an effect theory, we define it using the image of a map.
The image im f of a map f : A→ B (when it exists) is an effect q : B → I that is the smallest
effect satisfying q ◦ f = 1 ◦ f .

For πq a compression for q, we always have imπq ≤ q. We call q sharp when equality holds
here, or equivalently when q is the image of any map in the effect theory.

Now we can give the main definition of the paper, that of a pure effect theory.

Definition 3. A (monoidal) Pure Effect Theory (PET) is a (monoidal) effect theory satisfying
the following properties.

1. All effects have filters and compressions.

2. The pure maps form a (monoidal) dagger-category.

3. All maps have images.

4. The negation of a sharp effect is sharp (if q is sharp, then q⊥ is sharp)

5. Filters of sharp effects are adjoint to its compressions (if πq is a compression for sharp q,

then π†q is a filter for q, and vice versa).

6. Compressions of sharp effects are isometries (π†q ◦ πq = id for sharp q).

We can relate some of these properties to perhaps more familiar notions. An effect theory
has images and filters and compressions for sharp effects if and only if it has all kernels and
cokernels, while points 5 and 6 above ensure that the subcategory of pure maps is a dagger
kernel category [19].

While interesting results about PETs can be proven [30, 35], in order to state our main
result we need to bring it closer to the concrete physical world by requiring some operational
structure modelled after operational probabilistic theories [29]. Without going into details, the
properties we require of an operational effect theory are that its scalars equal the real unit
interval, which makes its effect spaces embed into real vector spaces, that these effect spaces are
finite-dimensional and order-separated by the states of the object, and that the set of states of
an object is closed when viewed as a set of functionals on the effect space.

Theorem 1 states that the effect spaces of an operational pure effect theory are isomorphic to
the set of effects of a Euclidean Jordan algebra (EJA) in a functorial way. A Jordan algebra is a
real vector space with a commutative unital operation ∗ that satisfies a weak form of associativity
called the Jordan identity : (a∗a)∗(b∗a) = ((a∗a)∗b)∗a. It is called Euclidean when it is also a
finite-dimensional Hilbert space with the inner product satisfying 〈a ∗ b, c〉 = 〈b, a ∗ c〉. EJAs are
of interest because they can equivalently be described as homogeneous self-dual positive cones,
and because many of the properties and structure present in C∗-algebras extend to them.

Finally, Theorem 2 states that if an operational pure effect theory also has monoidal struc-
ture, then the effect spaces must be isomorphic to a subset of the effect spaces of EJAs, namely
those of real and complex C∗-algebras. With this theorem we see that the abstract category the-
ory inspired properties of Definition 3 suffice, in a finite-dimensional convex setting, to recover
the familiar operator algebraic structure of quantum theory. Conversely, without assuming the
operational structure, we can view a monoidal pure effect theory as a type of category that
models the structure of an operator algebra.
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